
Bullet 2.82 Physics SDK Manual

Also check out the forums and wiki at bulletphysics.org

© 2013 Erwin Coumans
All Rights Reserved.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 2 -

Table of Contents

BULLET 2.82 PHYSICS SDK MANUAL ... 1

1 Introduction .. 5
Description of the library .. 5
Main Features .. 5
Contact and Support .. 5

2 What’s New .. 6
Preparing for Bullet 3.0 Alpha .. 6
New in Bullet 2.81 .. 6
New in Bullet 2.81 .. 6
New in Bullet 2.80 .. 6
New in Bullet 2.79 .. 7
New in Bullet 2.78 .. 7
New in Bullet 2.76 .. 7
Maya Dynamica Plugin ... 8

3 Quickstart.. 9
Download ... 9
Building using premake .. 9
Building using CMake ... 9
Building using autotools/automake ... 9
Testing demos .. 9
Integrating Bullet physics in your application .. 10
Integrate only the Collision Detection Library .. 10
Use snippets only, like the GJK Closest Point calculation. .. 10

4 Library Overview ... 11
Introduction.. 11
Software Design ... 11
Rigid Body Physics Pipeline... 12
Integration overview .. 12
Basic Data Types and Math Library .. 14
Memory Management, Alignment, Containers .. 14
Timing and Performance Profiling .. 15
Debug Drawing ... 16

5 Bullet Collision Detection .. 17
Collision Detection ... 17
Collision Shapes .. 18
Convex Primitives ... 18
Compound Shapes .. 19
Convex Hull Shapes .. 19
Concave Triangle Meshes ... 19
Convex Decomposition ... 19
Height field ... 20
btStaticPlaneShape ... 20
Scaling of Collision Shapes .. 20
Collision Margin .. 20
Collision Matrix ... 21
Registering custom collision shapes and algorithms .. 21

6 Collision Filtering (selective collisions) .. 22
Filtering collisions using masks ... 22
Filtering Collisions Using a Broadphase Filter Callback ... 22
Filtering Collisions Using a Custom NearCallback ... 23
Deriving your own class from btCollisionDispatcher .. 23

7 Rigid Body Dynamics ... 24

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 3 -

Introduction.. 24
Static, Dynamic and Kinematic Rigid Bodies ... 24
Center of mass World Transform ... 25
What's a MotionState? ... 25
Interpolation... 25
So how do I use one? .. 26
DefaultMotionState ... 26
Kinematic Bodies .. 26
Simulation frames and interpolation frames .. 27

8 Constraints .. 28
Point to Point Constraint .. 28
Hinge Constraint ... 28
Slider Constraint ... 29
Cone Twist Constraint .. 29
Generic 6 Dof Constraint .. 29

9 Actions: Vehicles & Character Controller .. 31
Action Interface .. 31
Raycast Vehicle ... 31
Character Controller ... 31

10 Soft Body Dynamics ... 32
Introduction.. 32
Construction from a triangle mesh ... 32
Collision clusters ... 32
Applying forces to a Soft body .. 33
Soft body constraints.. 33

11 Bullet Demo Description .. 34
AllBulletDemos ... 34
CCD Physics Demo .. 34
BSP Demo ... 34
Vehicle Demo ... 34
Fork Lift Demo .. 34

12 Advanced Low Level Technical Demos .. 35
Collision Interfacing Demo ... 35
Collision Demo.. 35
User Collision Algorithm ... 35
Gjk Convex Cast / Sweep Demo.. 35
Continuous Convex Collision .. 35
Raytracer Demo .. 35
Simplex Demo... 36

13 Authoring Tools and Serialization ... 37
Dynamica Maya Plugin ... 37
Blender ... 37
Cinema 4D, Lightwave CORE, Houdini .. 37
Serialization and the Bullet .bullet binary format... 38
COLLADA Physics format and viewer.. 38

14 General Tips .. 39
Avoid very small and very large collision shapes .. 39
Avoid large mass ratios (differences) ... 39
Combine multiple static triangle meshes into one ... 39
Use the default internal fixed timestep .. 39
For ragdolls use btConeTwistConstraint ... 39
Don’t set the collision margin to zero .. 40
Use less then 100 vertices in a convex mesh .. 40
Avoid huge or degenerate triangles in a triangle mesh .. 40
The profiling feature btQuickProf bypasses the memory allocator .. 40
Per triangle friction and restitution value .. 41
Custom Constraint Solver ... 41
Custom Friction Model ... 41

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 4 -

15 Parallelism: OpenCL, Compute, SPU, multi thread .. 42
OpenCL and Direct Compute cloth simulation ... 42
Cell SPU / SPURS optimized version ... 42
Unified multi threading .. 42
Win32 Threads, pthreads, sequential thread support ... 42

16 Further documentation and references .. 43
Online resources ... 43
Authoring Tools .. 43
Books .. 43
Contributions and people ... 44

Create Bullet Visual Studio projectfiles using CMake .. 45

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 5 -

1 Introduction

Description of the library

Bullet Physics is a professional open source collision detection, rigid body and soft body dynamics
library. The library is free for commercial use under the ZLib license.

Main Features

 Open source C++ code under Zlib license and free for any commercial use on all platforms
including PLAYSTATION 3, XBox 360, Wii, PC, Linux, Mac OSX, Android and iPhone

 Discrete and continuous collision detection including ray and convex sweep test. Collision
shapes include concave and convex meshes and all basic primitives

 Fast and stable rigid body dynamics constraint solver, vehicle dynamics, character
controller and slider, hinge, generic 6DOF and cone twist constraint for ragdolls

 Soft Body dynamics for cloth, rope and deformable volumes with two-way interaction with
rigid bodies, including constraint support

 Maya Dynamica plugin, Blender integration, COLLADA physics import/export support

Contact and Support

 Public forum for support and feedback is available at http://bulletphysics.org

 PLAYSTATION 3 licensed developers can download an optimized version for Cell SPU
through Sony PS3 Devnet from https://ps3.scedev.net/projects/spubullet

http://bulletphysics.org/
https://ps3.scedev.net/projects/spubullet

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 6 -

2 What’s New

Preparing for Bullet 3.0 Alpha

 The new Bullet 3.x version is making good progress, and the performance on high-end
GPUs such as AMD 7970 and NVIDIA 680 is good. See the github repository at
https://github.com/erwincoumans/bullet3

New in Bullet 2.81

 Mostly bug fixes, see https://code.google.com/p/bullet/source/list for details.

New in Bullet 2.81

 Rolling friction, so that spheres and other rounded shapes come to a rest, even when on a
sloped surface. See Demos/RollingFrictionDemo

 Gear constraint, joint feedback, improved speculative contacts, SIMD and NEON for iOS,
improved premake build system support for Linux and Mac OSX.

New in Bullet 2.80

 GPU rigid body pipeline running 100% on the GPU using OpenCL. This is a preview, Bullet
3.x will use this as a GPU backend. See Bullet/Extras/RigidBodyGpuPipeline.
Requires very recent GPU and drivers (Radeon 5870 or NVIDIA 470 with 290.53 or newer)

 Physics Effects rigid body pipeline, with Android/NEON optimizations. This is a preview,
Bullet 3.x will use this as handheld backend. Sony provides a VITA optimized version.
See Bullet/Extras/PhysicsEffects .

 Option to override the number of constraint solver iterations for individual constraints.
See Bullet/Demos/VoronoiFractureDemo, setOverrideNumSolverIterations

 The open source Dynamica Bullet Maya plugin is now deterministic when restarting the
simulation. Also it has preliminary cloth and convex decomposition (HACD) integration.
See http://dynamica.googlecode.com for source and precompiled downloads.

 Check the issue tracker at http://bullet.googlecode.com for other improvements.

https://github.com/erwincoumans/bullet3
https://code.google.com/p/bullet/source/list
http://dynamica.googlecode.com/
http://bullet.googlecode.com/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 7 -

New in Bullet 2.79

 Bullet 2.79 is mainly a bugfix release. Speculative contacts are disabled, it introduced too
many artifacts.

 Hierarchical Approximate Convex Decomposition library, thanks to Khaled Mamou.
It can create a convex decomposition from a 3D concave triangle mesh. It replaces John
Ratcliff’s ConvexDecomposition library. See Demos/ConvexDecomposition

 Premake build system to autogenerate Windows Visual Studio project files that can be
redistributed. CMake cannot do this properly. We still keep autotools and CMake support
up-to-date. See Bullet/msvc

New in Bullet 2.78

 Fracture and glueing demo that can break or glue child shapes of a btCompoundShape
when certain impulse thresholds are exceeded.
See Bullet/Demos/FractureDemo

 Breakable constraints, based on an applied impulse threshold.
See Bullet/Demos/ConstraintDemos

 Improved binary .bullet file format with soft body serialization and
See Bullet/Demos/SerializeDemo

 Polyhedral contact clipping and optional separating axis test (SAT) as alternative to
GJK/EPA and incremental contact manifold, for btPolyhedralConvexShape derived shapes
such as btConvexHullShape
See Demos/InternalEdgeDemo

 OpenCL and DirectCompute cloth simulation improvements: GPU kernels for capsule
collision detection and OpenCL-OpenGL interop
See Demos/OpenCLClothDemo and Demos/DX11ClothDemo

 Speculative/predictive contact constraints as a method to perform continuous collision
response.
See Demos/CcdPhysicsDemo

New in Bullet 2.76

 New binary .bullet file format support, with 32/64bit little/big endian compatibility.
See Bullet/Demos/SerializeDemo

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 8 -

 New btCollisionWorld::contactTest and btCollisionWorld::contactPairTest query for
immediate collision queries with a contact point callback.
See Bullet/Demos/CollisionInterfaceDemo

 New btInternalEdgeUtility to avoid unwanted collisions against internal triangle edges.
See Bullet/Demos/InternalEdgeDemo

 Improved MiniCL support in preparation for Bullet 3.x OpenCL support.
See Bullet/Demos/MiniCL_VectorAdd

 Improved CMake build system support, making Jam and other build systems obsolete.

 Many enhancements and bug fixes, see the issue tracked at bullet.googlecode.com

Maya Dynamica Plugin

 Improved constraint authoring for all constraint types.

 Export to the new .bullet file format.

http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4603

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 9 -

3 Quickstart

Download

Windows developers can download the zipped sources of Bullet from http://bullet.googlecode.com.
Mac OS X, Linux and other developers should download the gzipped tar archive. Bullet should
compile out-of-the-box for all platforms, and includes all dependencies.

Building using premake

You can generate projects for most platforms and compilers using premake. Under Windows, you can

click on build/vs2010.bat to generate Visual Studio projects. Some examples on other platforms
are ./premake_osx gmake or ./premake_osx xcode4 or ./premake_linux64 codeblocks

Projectfiles for Windows Visual Studio are included in Bullet/msvc/*/BULLET_PHYSICS.sln

Building using CMake

CMake adds support for many other build environments and platforms, including Microsoft Visual
Studio, XCode for Mac OSX, KDevelop for Linux and Unix Makefiles. Download and install Cmake
from http://cmake.org and use the CMake cmake-gui tool. See the Appendix for details.
You can also use cmake command-line. Run cmake without arguments to see the list of build system
generators for your platform. For Microsoft Visual Studio 8 2005, use

cmake . –G “Visual Studio 8 2005”

For example to generate Linux or Mac OSX makefiles run

cmake . –G “Unix Makefiles” or for Mac OSX Xcode4 use cmake . –G Xcode

Building using autotools/automake

Open a shell terminal and go to the Bullet root directory. Then execute

./autogen.sh (this is optional and not needed for downloaded packages)

./configure
make

Testing demos

Try to run and experiment with the Bullet demos in the Bullet/Demos folder.

http://bullet.googlecode.com/
http://cmake.org/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 10 -

Integrating Bullet physics in your application

Check out CcdPhysicsDemo how to create a btDiscreteDynamicsWorld , btCollisionShape,
btMotionState and btRigidBody. Each frame call the stepSimulation on the dynamics
world, and synchronize the world transform for your graphics object. Requirements:

 #include “btBulletDynamicsCommon.h” in your source file

 Required include path: Bullet/src folder

 Required libraries: BulletDynamics, BulletCollision, LinearMath

The actual name and of the library might be different. For example the Visual Studio compiler adds
the .lib extension, Unix systems usually add a lib prefix and .a extension. When using CMake the
library is usually location in the lib folder of the build directory.

See the Appendix with details how to setup a Visual Studio and Mac OSX Xcode project.

Integrate only the Collision Detection Library

Bullet Collision Detection can also be used without the Dynamics/Extras. Check out the low level
demo Collision Interface Demo, in particular the class btCollisionWorld. Requirements:

 #include “btBulletCollisionCommon.h” at the top of your file

 Add include path: Bullet/src folder

 Add libraries: BulletCollision, LinearMath

Use snippets only, like the GJK Closest Point calculation.

Bullet has been designed in a modular way keeping dependencies to a minimum. The
Demos/ConvexHullDistance demo demonstrates direct use of btGjkPairDetector.

http://www.continuousphysics.com/Bullet/BulletFull/classCcdPhysicsEnvironment.html
http://www.continuousphysics.com/Bullet/BulletFull/classCollisionShape.html
http://www.continuousphysics.com/Bullet/BulletFull/classRigidBody.html
http://www.continuousphysics.com/Bullet/BulletFull/classGjkPairDetector.html

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 11 -

4 Library Overview

Introduction

The main task of a physics engine is to perform collision detection, resolve collisions and other
constraints, and provide the updated world transform1 for all the objects. This chapter will give a
general overview of the rigid body dynamics pipeline as well as the basic data types and math library
shared by all components.

Software Design

Bullet has been designed to be customizable and modular. The developer can

 use only the collision detection component

 use the rigid body dynamics component without soft body dynamics component

 use only small parts of a the library and extend the library in many ways

 choose to use a single precision or double precision version of the library

 use a custom memory allocator, hook up own performance profiler or debug drawer

The main components are organized as follows:

1 World transform of the center of mass for rigid bodies, transformed vertices for soft bodies

Linear Math
Memory, Containers

Collision
Detection

Rigid Body
Dynamics

Soft Body
Dynamics

Bullet
Multi Threaded

Extras:
Maya Plugin

hkx2dae
.bsp, .obj,
other tools

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 12 -

Rigid Body Physics Pipeline

Before going into detail, the following diagram shows the most important data structures and
computation stages in the Bullet physics pipeline. This pipeline is executed from left to right, starting
by applying gravity, and ending by position integration, updating the world transform.

The entire physics pipeline computation and its data structures are represented in Bullet by a
dynamics world. When performing ‘stepSimulation’ on the dynamics world, all the above stages
are executed. The default dynamics world implementation is the btDiscreteDynamicsWorld.

Bullet lets the developer choose several parts of the dynamics world explicitly, such as broadphase
collision detection, narrowphase collision detection (dispatcher) and constraint solver.

Integration overview

If you want to use Bullet in your own 3D application, it is best to follow the steps in the HelloWorld
demo, located in Bullet/Demos/HelloWorld. In a nutshell:

 Create a btDiscreteDynamicsWorld or btSoftRigidDynamicsWorld

These classes, derived from btDynamicsWorld , provide a high level interface that manages your
physics objects and constraints. It also implements the update of all objects each frame.

 Create a btRigidBody and add it to the btDynamicsWorld

To construct a btRigidBody or btCollisionObject, you need to provide:

Forward
Dynamics

Broadphase
Collision Detection

Detect
Pairs

Compute
Contacts

Solve
constraints

Integrate
Position

Apply
Gravity

 Collision
Shapes

Transform
Velocity

 Rigid
Body
Mass,
Inertia

Over-
lapping
Pairs

Constraint
contacts

joints

Object
AABBs

Collision Data Dynamics Data

Compute
AABBs

Contact
Points

Predict
Transforms

Forward
Dynamics

Narrowphase
Collision
Detection

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 13 -

 Mass, positive for dynamics moving objects and 0 for static objects

 CollisionShape, like a Box, Sphere, Cone, Convex Hull or Triangle Mesh

 Material properties like friction and restitution

Update the simulation each frame:

 stepSimulation

Call the stepSimulation on the dynamics world. The btDiscreteDynamicsWorld automatically
takes into account variable timestep by performing interpolation instead of simulation for small
timesteps. It uses an internal fixed timestep of 60 Hertz. stepSimulation will perform collision
detection and physics simulation. It updates the world transform for active objecs by calling the
btMotionState’s setWorldTransform.

The next chapters will provide more information about collision detection and rigid body dynamics. A
lot of the details are demonstrated in the Bullet/Demos. If you can’t find certain functionality,
please visit the physics forum on the Bullet website at http://bulletphysics.org

http://bulletphysics.com/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 14 -

Basic Data Types and Math Library

The basic data types, memory management and containers are located in Bullet/src/LinearMath.

 btScalar

A btScalar is a posh word for a floating point number. In order to allow to compile the library in
single floating point precision and double precision, we use the btScalar data type throughout the
library. By default, btScalar is a typedef to float. It can be double by defining
BT_USE_DOUBLE_PRECISION either in your build system, or at the top of the file
Bullet/src/LinearMath/btScalar.h.

 btVector3

3D positions and vectors can be represented using btVector3. btVector3 has 3 scalar x,y,z components.
It has, however, a 4th unused w component for alignment and SIMD compatibility reasons. Many
operations can be performed on a btVector3, such as add subtract and taking the length of a vector.

 btQuaternion and btMatrix3x3

3D orientations and rotations can be represented using either btQuaternion or btMatrix3x3.

 btTransform

btTransform is a combination of a position and an orientation. It can be used to transform points
and vectors from one coordinate space into the other. No scaling or shearing is allowed.

Bullet uses a right-handed coordinate system:

Y

X
Z

(0,0,0)

Figure 1 Right-handed coordinate system

btTransformUtil, btAabbUtil provide common utility functions for transforms and AABBs.

Memory Management, Alignment, Containers

Often it is important that data is 16-byte aligned, for example when using SIMD or DMA transfers on
Cell SPU. Bullet provides default memory allocators that handle alignment, and developers can
provide their own memory allocator. All memory allocations in Bullet use:

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 15 -

 btAlignedAlloc, which allows to specify size and alignment

 btAlignedFree, free the memory allocated by btAlignedAlloc.

To override the default memory allocator, you can choose between:

 btAlignedAllocSetCustom is used when your custom allocator doesn’t support
alignment

 btAlignedAllocSetCustomAligned can be used to set your custom aligned memory
allocator.

To assure that a structure or class will be automatically aligned, you can use this macro:

 ATTRIBUTE_ALIGNED16(type) variablename creates a 16-byte aligned variable

Often it is necessary to maintain an array of objects. Originally the Bullet library used a STL std::vector
data structure for arrays, but for portability and compatibility reasons we switched to our own array
class.

 btAlignedObjectArray closely resembles std::vector. It uses the aligned allocator to
guarantee alignment. It has methods to sort the array using quick sort or heap sort.

To enable Microsoft Visual Studio Debugger to visualize btAlignedObjectArray and
btVector3, follow the instructions in Bullet/msvc/autoexp_ext.txt

Figure 2 MSVC Debug Visualization

Timing and Performance Profiling

In order to locate bottlenecks in performance, Bullet uses macros for hierarchical performance
measurement.

 btClock measures time using microsecond accuracy.

 BT_PROFILE(section_name) marks the start of a profiling section.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 16 -

 CProfileManager::dumpAll(); dumps a hierarchical performance output in the
console. Call this after stepping the simulation.

 CProfileIterator is a class that lets you iterate through the profiling tree.

Note that the profiler doesn’t use the memory allocator, so you might want to disable it when
checking for memory leaks, or when creating a final release build of your software.

The profiling feature can be switched off by defining #define BT_NO_PROFILE 1 in
Bullet/src/LinearMath/btQuickProf.h

Debug Drawing

Visual debugging the simulation data structures can be helpful. For example, this allows you to verify
that the physics simulation data matches the graphics data. Also scaling problems, bad constraint
frames and limits show up.

btIDebugDraw is the interface class used for debug drawing. Derive your own class and implement
the virtual ‘drawLine’ and other methods.

Assign your custom debug drawer to the dynamics world using the setDebugDrawer method.

Then you can choose to draw specific debugging features by setting the mode of the debug drawer:

dynamicsWorld->getDebugDrawer()->setDebugMode(debugMode);

Every frame you can call the debug drawing by calling the

world-> debugDrawWorld();
2

Here are some debug modes

 btIDebugDraw::DBG_DrawWireframe

 btIDebugDraw::DBG_DrawAabb

 btIDebugDraw::DBG_DrawConstraints

 btIDebugDraw::DBG_DrawConstraintLimits

By default all objects are visualized for a given debug mode, and when using many objects this can
clutter the display. You can disable debug drawing for specific objects by using

int f = objects->getCollisionFlags();

ob->setCollisionFlags(f|btCollisionObject::CF_DISABLE_VISUALIZE_OBJECT);

2 This feature is supported for both btCollisionWorld and btDiscreteDynamicsWorld

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 17 -

5 Bullet Collision Detection

Collision Detection

The collision detection provides algorithms and acceleration structures for closest point (distance and
penetration) queries as well as ray and convex sweep tests. The main data structures are:

 btCollisionObject is the object that has a world transform and a collision shape.

 btCollisionShape describes the collision shape of a collision object, such as box, sphere,
convex hull or triangle mesh. A single collision shape can be shared among multiple
collision objects.

 btGhostObject is a special btCollisionObject, useful for fast localized collision
queries.

 btCollisionWorld stores all btCollisionObjects and provides an interface to
perform queries.

The broadphase collision detection provides acceleration structure to quickly reject pairs of objects
based on axis aligned bounding box (AABB) overlap. Several different broadphase acceleration
structures are available:

 btDbvtBroadphase uses a fast dynamic bounding volume hierarchy based on AABB tree

 btAxisSweep3 and bt32BitAxisSweep3 implement incremental 3d sweep and prune

 btCudaBroadphase implements a fast uniform grid using GPU graphics hardware

The broadphase adds and removes overlapping pairs from a pair cache. The developer can choose the
type of pair cache.

A collision dispatcher iterates over each pair, searches for a matching collision algorithm based on the
types of objects involved and executes the collision algorithm computing contact points.

 btPersistentManifold is a contact point cache to store contact points for a given pair of
objects.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 18 -

Collision Shapes

Bullet supports a large variety of different collision shapes, and it is possible to add your own. For best
performance and quality it is important to choose the collision shape that suits your purpose. The
following diagram can help making a decision:

Convex Primitives

Most primitive shapes are centered around the origin of their local coordinate frame:

btBoxShape : Box defined by the half extents (half length) of its sides

btSphereShape : Sphere defined by its radius

btCapsuleShape: Capsule around the Y axis. Also btCapsuleShapeX/Z

btCylinderShape : Cylinder around the Y axis. Also btCylinderShapeX/Z.

btConeShape : Cone around the Y axis. Also btConeShapeX/Z.

Is is a moving object?

btBoxShape,
btSphereShape,
btCapsuleShape,
btCylinderShape,
btConeShape

btConvexHullShape

Can it be approximated by a single
primitive, such as box, sphere, capsule,
cone, cylinder?

Is it a 2D heightfield?

Can it be approximated by a
convex hull of a triangle mesh?

Can it be approximated using
multiple primitives, such as
box, sphere etc?

btCompoundShape btGimpactTriangleMeshShape

btHeightfield
TerrainShape

Are there shared
scaled instances?

btScaledBvhTriangle
MeshShape

btBvhTriangle
MeshShape

NO

NO

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 19 -

btMultiSphereShape : Convex hull of multiple spheres, that can be used to create a Capsule (by
passing 2 spheres) or other convex shapes.

Compound Shapes

Multiple convex shapes can be combined into a composite or compound shape, using the
btCompoundShape. This is a concave shape made out of convex sub parts, called child shapes. Each
child shape has its own local offset transform, relative to the btCompoundShape. It is a good idea to
approximate concave shapes using a collection of convex hulls, and store them in a
btCompoundShape. You can adjust the center of mass using a utility method btCompoundShape
::calculatePrincipalAxisTransform.

Convex Hull Shapes

Bullet supports several ways to represent a convex triangle meshes. The easiest way is to create a
btConvexHullShape and pass in an array of vertices. In some cases the graphics mesh contains too
many vertices to be used directly as btConvexHullShape. In that case, try to reduce the number of
vertices.

Concave Triangle Meshes

For static world environment, a very efficient way to represent static triangle meshes is to use a
btBvhTriangleMeshShape. This collision shape builds an internal acceleration structure from a
btTriangleMesh or btStridingMeshInterface. Instead of building the tree at run-time, it is
also possible to serialize the binary tree to disc. See Demos/ConcaveDemo how to save and load this

btOptimizedBvh tree acceleration structure. When you have several instances of the same triangle
mesh, but with different scaling, you can instance a btBvhTriangleMeshShape multiple times
using the btScaledBvhTriangleMeshShape. The btBvhTriangleMeshShape can store
multiple mesh parts. It keeps a triangle index and part index in a 32bit structure, reserving 10 bits for
the part Id and the remaining 22 bits for triangle index. If you need more than 2 million triangles,
either split the the triangle mesh into multiple sub meshes, or change the default in #define
MAX_NUM_PARTS_IN_BITS in the file
src\BulletCollision\BroadphaseCollision\btQuantizedBvh.h

Convex Decomposition

Ideally, concave meshes should only be used for static artwork. Otherwise its convex hull should be

used by passing the mesh to btConvexHullShape. If a single convex shape is not detailed enough,
multiple convex parts can be combined into a composite object called btCompoundShape. Convex
decomposition can be used to decompose the concave mesh into several convex parts. See the
Demos/ConvexDecompositionDemo for an automatic way of doing convex decomposition.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 20 -

Height field

Bullet provides support for the special case of a flat 2D concave terrain through the
btHeightfieldTerrainShape. See Demos/TerrainDemo or Demos/VehicleDemo for its usage.

btStaticPlaneShape

As the name suggests, the btStaticPlaneShape can represent an infinite plane or half space. This
shape can only be used for static, non-moving objects. This shape has been introduced mainly for
demo purposes.

Scaling of Collision Shapes

Some collision shapes can have local scaling applied. Use
btCollisionShape::setScaling(vector3). Non uniform scaling with different scaling values for
each axis, can be used for btBoxShape, btMultiSphereShape, btConvexShape,
btTriangleMeshShape. Uniform scaling, using x value for all axis, can be used for
btSphereShape. Note that a non-uniform scaled sphere can be created by using a
btMultiSphereShape with 1 sphere. As mentioned before, the
btScaledBvhTriangleMeshShape allows to instantiate a btBvhTriangleMeshShape at different
non-uniform scale factors. The btUniformScalingShape allows to instantiate convex shapes at
different scales, reducing the amount of memory.

Collision Margin

Bullet uses a small collision margin for collision shapes, to improve performance and reliability of the
collision detection. It is best not to modify the default collision margin, and if you do use a positive
value: zero margin might introduce problems. By default this collision margin is set to 0.04, which is 4
centimeter if your units are in meters (recommended).

Dependent on which collision shapes, the margin has different meaning. Generally the collision
margin will expand the object. This will create a small gap. To compensate for this, some shapes will
subtract the margin from the actual size. For example, the btBoxShape subtracts the collision margin
from the half extents. For a btSphereShape, the entire radius is collision margin so no gap will
occur. Don’t override the collision margin for spheres. For convex hulls, cylinders and cones, the
margin is added to the extents of the object, so a gap will occur, unless you adjust the graphics mesh
or collision size. For convex hull objects, there is a method to remove the gap introduced by the

margin, by shrinking the object. See the Demos/BspDemo for this advanced use.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 21 -

Collision Matrix

For each pair of shape types, Bullet will dispatch a certain collision algorithm, by using the dispatcher.
By default, the entire matrix is filled with the following algorithms. Note that Convex represents
convex polyhedron, cylinder, cone and capsule and other GJK compatible primitives. GJK stands for
Gilbert, Johnson and Keerthi, the people behind this convex distance calculation algorithm. It is
combined with EPA for penetration depth calculation. EPA stands for Expanding Polythope
Algorithm by Gino van den Bergen. Bullet has its own free implementation of GJK and EPA.

 box sphere convex,cylinder

cone,capsule

compound triangle mesh

box boxbox spherebox gjk compound concaveconvex

sphere spherebox spheresphere gjk compound concaveconvex

convex,
cylinder,

cone,

capsule

gjk gjk gjk or SAT compound concaveconvex

compound compound compound compound compound compound

triangle
mesh

concaveconvex concaveconvex concaveconvex compound gimpact

Registering custom collision shapes and algorithms

The user can register a custom collision detection algorithm and override any entry in this Collision
Matrix by using the btDispatcher::registerCollisionAlgorithm. See
Demos/UserCollisionAlgorithm for an example, that registers a SphereSphere collision
algorithm.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 22 -

6 Collision Filtering (selective collisions)

Bullet provides three easy ways to ensure that only certain objects collide with each other: masks,
broadphase filter callbacks and nearcallbacks. It is worth noting that mask-based collision selection
happens a lot further up the toolchain than the callback do. In short, if masks are sufficient for your
purposes, use them; they perform better and are a lot simpler to use.

Of course, don't try to shoehorn something into a mask-based selection system that clearly doesn't fit
there just because performance may be a little better.

Filtering collisions using masks

Bullet supports bitwise masks as a way of deciding whether or not things should collide with other
things, or receive collisions.

int myGroup = 1;

int collideMask = 4;

world->addCollisionObject(object,myGroup,collideMask);

During broadphase collision detection overlapping pairs are added to a pair cache, only when the
mask matches the group of the other objects (in needsBroadphaseCollision)

bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;

collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);

If you have more types of objects than the 32 bits available to you in the masks, or some collisions are
enabled or disabled based on other factors, then there are several ways to register callbacks to that
implements custom logic and only passes on collisions that are the ones you want:

Filtering Collisions Using a Broadphase Filter Callback

One efficient way is to register a broadphase filter callback. This callback is called at a very early stage
in the collision pipeline, and prevents collision pairs from being generated.

struct YourOwnFilterCallback : public btOverlapFilterCallback

{

 // return true when pairs need collision

 virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const

 {

 bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;

 collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);

 //add some additional logic here that modified 'collides'

 return collides;

 }

};

And then create an object of this class and register this callback using:

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 23 -

btOverlapFilterCallback * filterCallback = new YourOwnFilterCallback();

dynamicsWorld->getPairCache()->setOverlapFilterCallback(filterCallback);

Filtering Collisions Using a Custom NearCallback

Another callback can be registered during the narrowphase, when all pairs are generated by the
broadphase. The btCollisionDispatcher::dispatchAllCollisionPairs calls this
narrowphase nearcallback for each pair that passes the
'btCollisionDispatcher::needsCollision' test. You can customize this nearcallback:

void MyNearCallback(btBroadphasePair& collisionPair,

 btCollisionDispatcher& dispatcher, btDispatcherInfo& dispatchInfo) {

 // Do your collision logic here

 // Only dispatch the Bullet collision information if you want the physics to continue

 dispatcher.defaultNearCallback(collisionPair, dispatcher, dispatchInfo);

}

mDispatcher->setNearCallback(MyNearCallback);

Deriving your own class from btCollisionDispatcher

For even more fine grain control over the collision dispatch, you can derive your own class from
btCollisionDispatcher and override one or more of the following methods:

 virtual bool needsCollision(btCollisionObject* body0,btCollisionObject* body1);

 virtual bool needsResponse(btCollisionObject* body0,btCollisionObject* body1);

 virtual void dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,const

btDispatcherInfo& dispatchInfo,btDispatcher* dispatcher) ;

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 24 -

7 Rigid Body Dynamics

Introduction

The rigid body dynamics is implemented on top of the collision detection module. It adds forces,
mass, inertia, velocity and constraints.

 btRigidBody is the main rigid body object, moving objects have non-zero mass and
inertia. btRigidBody is derived from btCollisionObject, so it inherits its world transform,
friction and restitution and adds linear and angular velocity.

 btTypedConstraint is the base class for rigid body constraints, including
btHingeConstraint, btPoint2PointConstraint, btConeTwistConstraint,
btSliderConstraint and btGeneric6DOFconstraint.

 btDiscreteDynamicsWorld is derived from btCollisionWorld, and is a container for
rigid bodies and constraints. It provides the stepSimulation to proceed.

Static, Dynamic and Kinematic Rigid Bodies

There are 3 different types of objects in Bullet:

 Dynamic (moving) rigidbodies

 positive mass

 every simulation frame the dynamics will update its world transform

 Static rigidbodies

 zero mass

 cannot move but just collide

 Kinematic rigidbodies

 zero mass

 can be animated by the user, but there will be only one-way interaction: dynamic
objects will be pushed away but there is no influence from dynamics objects

All of them need to be added to the dynamics world. The rigid body can be assigned a collision shape.
This shape can be used to calculate the distribution of mass, also called inertia tensor.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 25 -

Center of mass World Transform

The world transform of a rigid body is in Bullet always equal to its center of mass, and its basis also
defines its local frame for inertia. The local inertia tensor depends on the shape, and the
btCollisionShape class provides a method to calculate the local inertia, given a mass.

This world transform has to be a rigid body transform, which means it should contain no scaling,
shear etc. If you want an object to be scaled, you can scale the collision shape. Other transformation,
such as shear, can be applied (baked) into the vertices of a triangle mesh if necessary.

In case the collision shape is not aligned with the center of mass transform, it can be shifted to match.
For this, you can use a btCompoundShape, and use the child transform to shift the child collision
shape.

What's a MotionState?

MotionStates are a way for Bullet to do all the hard work for you getting the world transform of
objects being simulated into the rendering part of your program.

In most situations, your game loop would iterate through all the objects you're simulating before each
frame rander. For each object, you would update the position of the render object from the physics
body. Bullet uses something called MotionStates to save you this effort.

There are multiple other benefits of MotionStates:

 Computation involved in moving bodies around is only done for bodies that have moved;
no point updating the position of a render object every frame if it isn't moving.

 You don't just have to do render stuff in them. They could be effective for notifying
network code that a body has moved and needs to be updated across the network.

 Interpolation is usually only meaningful in the context of something visible on-screen.
Bullet manages body interpolation through MotionStates.

 You can keep track of a shift between graphics object and center of mass transform.

 They're easy

Interpolation

Bullet knows how to interpolate body movement for you. As mentioned, implemention of
interpolation is handled through MotionStates.

If you attempt to ask a body for its position through btCollisionObject::getWorldTransform
or btRigidBody::getCenterOfMassTransform, it will return the position at the end of the last

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 26 -

physics tick. That's useful for many things, but for rendering you will want some interpolation. Bullet
interpolates the transform of the body before passing the value to setWorldTransform.

If you want the non-interpolated position of a body [which will be the position as it was calculated at
the end of the last physics tick], use btRigidBody::getWorldTransform() and query the body directly.

So how do I use one?

MotionStates are used in two places in Bullet.

The first is when the body is first created. Bullet grabs the initial position of the body from the
motionstate when the body enters the simulation

Bullet calls getWorldTransform with a reference to the variable it wants you to fill with transform
information

Bullet also calls getWorldTransform on kinematic bodies. Please see the section below

After the first update, during simulation Bullet will call the motion state for a body to move that body
around

Bullet calls setWorldTransform with the transform of the body, for you to update your object
appropriately

To implement one, simply inherit btMotionState and override getWorldTransform and
setWorldTransform.

DefaultMotionState

Although recommended, it is not necessary to derive your own motionstate from btMotionState
interface. Bullet provides a default motionstate that you can use for this. Simply construct it with the
default transform of your body:

btDefaultMotionState* ms =new btDefaultMotionState();

There is an example for an Ogre3D Motion State in an Appendix.

Kinematic Bodies

If you plan to animate or move static objects, you should flag them as kinematic. Also disable the
sleeping/deactivation for them during the animation. This means Bullet dynamics world will get the
new worldtransform from the btMotionState every simulation frame.

body->setCollisionFlags(body->getCollisionFlags() |

btCollisionObject::CF_KINEMATIC_OBJECT);

body->setActivationState(DISABLE_DEACTIVATION);

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 27 -

If you are using kinematic bodies, then getWorldTransform is called every simulation step. This
means that your kinematic body's motionstate should have a mechanism to push the current position
of the kinematic body into the motionstate.

Simulation frames and interpolation frames

By default, Bullet physics simulation runs at an internal fixed framerate of 60 Hertz (0.01666). The
game or application might have a different or even variable framerate. To decouple the application
framerate from the simulation framerate, an automatic interpolation method is built into
stepSimulation: when the application delta time, is smaller then the internal fixed timestep, Bullet will
interpolate the world transform, and send the interpolated worldtransform to the btMotionState,
without performing physics simulation. If the application timestep is larger then 60 hertz, more then 1
simulation step can be performed during each ‘stepSimulation’ call. The user can limit the maximum
number of simulation steps by passing a maximum value as second argument.

When rigidbodies are created, they will retrieve the initial worldtransform from the btMotionState,
using btMotionState::getWorldTransform. When the simulation is running, using
stepSimulation, the new worldtransform is updated for active rigidbodies using the
btMotionState::setWorldTransform.

Dynamic rigidbodies have a positive mass, and their motion is determined by the simulation. Static
and kinematic rigidbodies have zero mass. Static objects should never be moved by the user.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 28 -

8 Constraints

There are several constraints implemented in Bullet. See Demos/ConstraintDemo for an example of
each of them. All constraints including the btRaycastVehicle are derived from btTypedConstraint.
Constraint act between two rigidbodies, where at least one of them needs to be dynamic.

Point to Point Constraint

Point to point constraint limits the translation so that the local pivot points of 2 rigidbodies match in
worldspace. A chain of rigidbodies can be connected using this constraint.

btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA);

btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB);

Figure 3 Point to point constraint

Hinge Constraint

Hinge constraint, or revolute joint restricts two additional angular degrees of freedom, so the body
can only rotate around one axis, the hinge axis. This can be useful to represent doors or wheels
rotating around one axis. The user can specify limits and motor for the hinge.

btHingeConstraint(btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false);

btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA = false);

btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3&

pivotInB, btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA = false);

btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool

useReferenceFrameA = false);

Figure 4 Hinge Constraint

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 29 -

Slider Constraint

The slider constraint allows the body to rotate around one axis and translate along this axis.

btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool

useLinearReferenceFrameA);

Figure 5 Slider Constraint

Cone Twist Constraint

To create ragdolls, the conve twist constraint is very useful for limbs like the upper arm. It is a special
point to point constraint that adds cone and twist axis limits. The x-axis serves as twist axis.

btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame);

btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame);

Generic 6 Dof Constraint

This generic constraint can emulate a variety of standard constraints, by configuring each of the 6
degrees of freedom (dof). The first 3 dof axis are linear axis, which represent translation of rigidbodies,
and the latter 3 dof axis represent the angular motion. Each axis can be either locked, free or limited.
On construction of a new btGeneric6DofConstraint, all axis are locked. Afterwards the axis can
be reconfigured. Note that several combinations that include free and/or limited angular degrees of
freedom are undefined.

btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB

,bool useLinearReferenceFrameA);

Following is convention:

btVector3 lowerSliderLimit = btVector3(-10,0,0);

btVector3 hiSliderLimit = btVector3(10,0,0);

btGeneric6DofConstraint* slider = new btGeneric6DofConstraint(*d6body0,*fixedBody1,frameInA,frameInB);

slider->setLinearLowerLimit(lowerSliderLimit);

slider->setLinearUpperLimit(hiSliderLimit);

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 30 -

For each axis:

 Lowerlimit == Upperlimit -> axis is locked.
 Lowerlimit > Upperlimit -> axis is free
 Lowerlimit < Upperlimit -> axis it limited in that range

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 31 -

9 Actions: Vehicles & Character Controller

Action Interface

In certain cases it is useful to process some custom physics game code inside the physics pipeline.
Although it is possible to use a tick callback, when there are several objects to be updated, it can be
more convenient to derive your custom class from btActionInterface. And implement the
btActionInterface::updateAction(btCollisionWorld* world, btScalar

deltaTime); There are built-in examples, btRaycastVehicle and
btKinematicCharacterController, that are using this btActionInterace.

Raycast Vehicle

For arcade style vehicle simulations, it is recommended to use the simplified Bullet vehicle model as
provided in btRaycastVehicle. Instead of simulation each wheel and chassis as separate rigid bodies,
connected by constraints, it uses a simplified model. This simplified model has many benefits, and is
widely used in commercial driving games.

The entire vehicle is represented as a single rigidbody, the chassis. The collision detection of the
wheels is approximated by ray casts, and the tire friction is a basic anisotropic friction model.

See src/BulletDynamics/Vehicle and Demos/VehicleDemo for more details, or check the
Bullet forums.

Kester Maddock shared an interesting document about Bullet vehicle simulation here:

http://tinyurl.com/ydfb7lm

Character Controller

A player or NPC character can be constructed using a capsule shape, sphere or other shape. To avoid
rotation, you can set the ‘angular factor’ to zero, which disables the angular rotation effect during
collisions and other constraints. See btRigidBody::setAngularFactor. Other options (that are
less recommended) include setting the inverse inertia tensor to zero for the up axis, or using a
angular-only hinge constraint.

There is also an experimental3 btKinematicCharacterController as an example a non-physical

character controller. It uses a btGhostShape to perform collision queries to create a character that
can climb stairs, slide smoothly along walls etc. See src/BulletDynamics/Character and
Demos/CharacterDemo for its usage.

3 btKinematicCharacterController has several outstanding issues.

http://tinyurl.com/ydfb7lm

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 32 -

10 Soft Body Dynamics

Preliminary documentation

Introduction

The soft body dynamics provides rope, cloth simulation and volumetric soft bodies, on top of the
existing rigid body dynamics. There is two-way interaction between soft bodies, rigid bodies and
collision objects.

 btSoftBody is the main soft body object. It is derived from btCollisionObject. Unlike
rigid bodies, soft bodies don’t have a single world transform: each node/vertex is specified
in world coordinate.

 btSoftRigidDynamicsWorld is the container for soft bodies, rigid bodies and collision
objects.

It is best to learn from Demos/SoftBodyDemo how to use soft body simulation.

Here are some basic guidelines in a nutshell:

Construction from a triangle mesh

The btSoftBodyHelpers::CreateFromTriMesh can automatically create a soft body from a
triangle mesh.

Collision clusters

By default, soft bodies perform collision detection using between vertices (nodes) and triangles (faces).
This requires a dense tessellation, otherwise collisions might be missed. An improved method uses
automatic decomposition into convex deformable clusters. To enable collision clusters, use:

psb->generateClusters(numSubdivisions);

//enable cluster collision between soft body and rigid body

psb->m_cfg.collisions += btSoftBody::fCollision::CL_RS;

//enable cluster collision between soft body and soft body

psb->m_cfg.collisions += btSoftBody::fCollision::CL_SS;

The Softbody and AllBulletDemos has a debug option to visualize the convex collision clusters.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 33 -

Applying forces to a Soft body

There are methods to apply a force to each vertex (node) or at an individual node:

softbody ->addForce(const btVector3& forceVector);

softbody ->addForce(const btVector3& forceVector,int node);

Soft body constraints

It is possible to fix one or more vertices (nodes), making it immovable:

softbody->setMass(node,0.f);

or to attach one or more vertices of a soft body to a rigid body:

softbody->appendAnchor(int node,btRigidBody* rigidbody, bool

disableCollisionBetweenLinkedBodies=false);

It is also possible to attach two soft bodies using constraints, see Bullet/Demos/SoftBody.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 34 -

11 Bullet Demo Description

Bullet includes several demos. They are tested on several platforms and use OpenGL graphics and
Glut. Some shared functionality like mouse picking and text rendering is provided in the
Demos/OpenGL support folder. This is implemented in the DemoApplication class. Each demo
derives a class from DemoApplication and implements its own initialization of the physics in the
‘initPhysics’ method.

AllBulletDemos

This is a combination of several demos. It includes demonstrations of a fork lift, ragdolls, cloth and
soft bodies and several performance benchmarks.

CCD Physics Demo

This is a that shows how to setup a physics simulation, add some objects, and step the simulation. It
shows stable stacking, and allows mouse picking and shooting boxes to collapse the wall. The
shooting speed of the box can be changed, and for high velocities, the CCD feature can be enabled to
avoid missing collisions. Try out advanced features using the #defines at the top of
Demos/CcdPhysicsDemo/CcdPhysicsDemo.cpp

BSP Demo

Import a Quake .bsp files and convert the brushes into convex objects. This performs better then using
triangles.

Vehicle Demo

This demo shows the use of the build-in vehicle. The wheels are approximated by ray casts. This
approximation works very well for fast moving vehicles.

Fork Lift Demo

A demo that shows how to use constraints like hinge and slider constraint to build a fork lift vehicle.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 35 -

12 Advanced Low Level Technical Demos

Collision Interfacing Demo

This demo shows how to use Bullet collision detection without the dynamics. It uses the
btCollisionWorld class, and fills this will btCollisionObjects. The
performDiscreteCollisionDetection method is called and the demo shows how to gather the
contact points.

Collision Demo

This demo is more low level then previous Collision Interfacing Demo. It directly uses the
btGJKPairDetector to query the closest points between two objects.

User Collision Algorithm

Shows how you can register your own collision detection algorithm that handles the collision
detection for a certain pair of collision types. A simple sphere-sphere case overides the default GJK
detection.

Gjk Convex Cast / Sweep Demo

This demo show how to performs a linear sweep between to collision objects and returns the time of
impact. This can be useful to avoid penetrations in camera and character control.

Continuous Convex Collision

Shows time of impact query using continuous collision detection, between two rotating and
translating objects. It uses Bullet’s implementation of Conservative Advancement.

Raytracer Demo

This shows the use of CCD ray casting on collision shapes. It implements a ray tracer that can
accurately visualize the implicit representation of collision shapes. This includes the collision margin,
convex hulls of implicit objects, minkowski sums and other shapes that are hard to visualize
otherwise.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 36 -

Simplex Demo

This is a very low level demo testing the inner workings of the GJK sub distance algorithm. This
calculates the distance between a simplex and the origin, which is drawn with a red line. A simplex
contains 1 up to 4 points, the demo shows the 4 point case, a tetrahedron. The Voronoi simplex solver
is used, as described by Christer Ericson in his collision detection book.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 37 -

13 Authoring Tools and Serialization

Collision shapes, rigid body and constraints can be created in a 3D authoring tool and exported to a
file format that Bullet can read.

Dynamica Maya Plugin

Walt Disney Animation Studios contributed their in-house Maya plugin to author Bullet collision
shapes and rigid bodies as open source. Dynamica can simulation rigid body dynamica within Maya,
and it can export to Bullet .bullet physics files and COLLADA Physics. The latest version has preliminary
support for cloth/soft body.

There is more information in the Bullet wiki page. You can download a precompiled version of the
Dynamica plugin for Windows or Mac OSX from http://bullet.googlecode.com.
The source code repository of Dynamica is under http://dynamica.googlecode.com

Blender

The open source 3D production suite Blender uses Bullet physics for animations and its internal game
engine. See http://blender.org
Blender has an option to export COLLADA Physics files. There is also a project that can directly read
any information from a Blender .blend file, including collision shape, rigid body and constraint

information. See http://gamekit.googlecode.com
Blender 2.57 and later has an option to export to .bullet files directly from the game engine. This can
be done using the exportBulletFile(“name.bullet”) Python command in the
PhysicsConstraints module.

Cinema 4D, Lightwave CORE, Houdini

Cinema 4D 11.5 uses Bullet for the rigid body simulation, and there is a report that Lightwave CORE
also plans to use Bullet.

For Houdini there is a DOP/plugin, see
http://code.google.com/p/bullet-physics-solver/

http://bullet.googlecode.com/
http://dynamica.googlecode.com/
http://blender.org/
http://gamekit.googlecode.com/
http://code.google.com/p/bullet-physics-solver/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 38 -

Serialization and the Bullet .bullet binary format

Bullet 2.76 onwards has the capability to save the dynamics world to a binary dump. Saving the
objects and shapes into a buffer is built-in, so no additional libraries are necessary. Here is an example
how to save the dynamics world to a binary .bullet file:

btDefaultSerializer* serializer = new btDefaultSerializer();

 dynamicsWorld->serialize(serializer);

 FILE* file = fopen("testFile.bullet","wb");

 fwrite(serializer->getBufferPointer(),serializer->getCurrentBufferSize(),1, file);

 fclose(file);

You can press the ‘=’ key in most of the Bullet demos to save a ‘testFile.bullet’. You can read .bullet
files using the btBulletWorldImporter as implemented in the Bullet/Demos/SerializationDemo.

Futher information about .bullet serialization is at the Bullet wiki at

http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_binary_serialization

COLLADA Physics format and viewer

COLLADA is rich 3D specification and XML based file format that includes collision and physics
information. Dynamica Maya plugin, Blender and other software can export/import this standard
physics file format.

The Dynamica source repository at http://dynamica.googlecode.com provides example code to load
and save COLLADA Physics files based on the COLLADA-DOM and libxml. See
Dynamica/Demos/ColladaDemo.

 The Dynamica/Extras/BulletColladaConverter class can be used as example for other
COLLADA physics integrations.

http://bulletphysics.org/mediawiki-1.5.8/index.php/Bullet_binary_serialization
http://dynamica.googlecode.com/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 39 -

14 General Tips

Avoid very small and very large collision shapes

The minimum object size for moving objects is about 0.2 units, 20 centimeters for Earth gravity. If
smaller objects or bigger gravity are manipulated, reduce the internal simulation frequency
accordingly, using the third argument of btDiscreteDynamicsWorld::stepSimulation. By
default it is 60Hz. For instance, simulating a dice throw (1cm-wide box with a gravity of 9.8m/s2)
requires a frequency of at least 300Hz (1./300.). It is recommended to keep the maximum size of
moving objects smaller then about 5 units/meters.

Avoid large mass ratios (differences)

Simulation becomes unstable when a heavy object is resting on a very light object. It is best to keep the
mass around 1. This means accurate interaction between a tank and a very light object is not realistic.

Combine multiple static triangle meshes into one

Many small btBvhTriangleMeshShape pollute the broadphase. Better combine them.

Use the default internal fixed timestep

Bullet works best with a fixed internal timestep of at least 60 hertz (1/60 second).

For safety and stability, Bullet will automatically subdivide the variable timestep into fixed internal
simulation substeps, up to a maximum number of substeps specified as second argument to
stepSimulation. When the timestep is smaller then the internal substep, Bullet will interpolate the
motion.

This safety mechanism can be disabled by passing 0 as maximum number of substeps (second
argument to stepSimulation): the internal timestep and substeps are disabled, and the actual
timestep is simulated. It is not recommended to disable this safety mechanism.

For ragdolls use btConeTwistConstraint

It is better to build a ragdoll out of btHingeConstraint and/or btConeTwistLimit for knees,
elbows and arms.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 40 -

Don’t set the collision margin to zero

Collision detection system needs some margin for performance and stability. If the gap is noticeable,
please compensate the graphics representation.

Use less then 100 vertices in a convex mesh

It is best to keep the number of vertices in a btConvexHullShape limited. It is better for
performance, and too many vertices might cause instability. Use the btShapeHull utility to simplify
convex hulls.

Avoid huge or degenerate triangles in a triangle mesh

Keep the size of triangles reasonable, say below 10 units/meters. Also degenerate triangles with large
size ratios between each sides or close to zero area can better be avoided.

The profiling feature btQuickProf bypasses the memory allocator

If necessary, disable the profiler when checking for memory leaks, or when creating the final version
of your software release. The profiling feature can be switched off by defining #define
BT_NO_PROFILE 1 in Bullet/src/LinearMath/btQuickProf.h

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 41 -

Advanced Topics

Per triangle friction and restitution value

By default, there is only one friction value for one rigidbody. You can achieve per shape or per
triangle friction for more detail. See the Demos/ConcaveDemo how to set the friction per triangle.
Basically, add CF_CUSTOM_MATERIAL_CALLBACK to the collision flags or the rigidbody, and
register a global material callback function. To identify the triangle in the mesh, both triangleID and
partId of the mesh is passed to the material callback. This matches the triangleId/partId of the striding
mesh interface.

An easier way is to use the btMultimaterialTriangleMeshShape. See the
Demos/MultiMaterialDemo for usage.

Custom Constraint Solver

Bullet uses its btSequentialImpulseConstraintSolver by default. You can use a different
constraint solver, by passing it into the constructor of your btDynamicsWorld. For comparison you
can use the Extras/quickstep solver from ODE.

Custom Friction Model

If you want to have a different friction model for certain types of objects, you can register a friction
function in the constraint solver for certain body types. This feature is not compatible with the cache
friendly constraint solver setting.

See #define USER_DEFINED_FRICTION_MODEL in Demos/CcdPhysicsDemo.cpp.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 42 -

15 Parallelism: OpenCL, Compute, SPU, multi thread

OpenCL and Direct Compute cloth simulation

Parts of the CPU intensive innerloop of the cloth and soft body library have been implemented using
OpenCL and DirectX 11 DirectCompute kernels. See Demos/OpenCLClothDemo and
Demos/DX11ClothDemo for examples.

Cell SPU / SPURS optimized version

Bullet collision detection and physics have been optimized for Cell SPU. This means collision code has
been refactored to run on multiple parallel SPU processors. The collision detection code and data have
been refactored to make it suitable for 256kb local store SPU memory. The user can activate the
parallel optimizations by using a special collision dispatcher
(SpuGatheringCollisionDispatcher) that dispatches the work to SPU. The shared public
implementation is located in Bullet/src/BulletMultiThreaded.

Please contact Sony developer support on PS3 Devnet for a Playstation 3 optimized version of Bullet.

Unified multi threading

Efforts have been made to make it possible to re-use the SPU parallel version in other multi threading
environments, including multi core processors. This allows more effective debugging of SPU code
under Windows, as well as utilizing multi core processors. For non-SPU multi threading, the
implementation performs fake DMA transfers using a memcpy, and each thread gets its own 256kb
‘local store’ working memory allocated. See Bullet/ThreadingDemo for an example.

Win32 Threads, pthreads, sequential thread support

Basic Win32 Threads, pthreads and sequential thread support is available to execute the parallel
constraint solver and parallel collision dispatcher. See Demos/BulletMultiThreaded for an
example.

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 43 -

16 Further documentation and references

Online resources

Visit the Bullet Physics website at http://bulletphysics.org for a discussion forum, a wiki with
frequently asked questions and tips and download of the most recent version. The Wikipedia page
lists some games and films using Bullet at
http://en.wikipedia.org/wiki/Bullet_(software)

Authoring Tools

 Dynamica Maya plugin and Bullet COLLADA Physics support at
http://dynamica.googlecode.com

 Blender 3D modeler includes Bullet and COLLADA physics support:
http://www.blender.org

 COLLADA physics standard: http://www.khronos.org/collada

Books

 Realtime Collision Detection, Christer Ericson
http://www.realtimecollisiondetection.net/
Bullet uses the discussed voronoi simplex solver for GJK

 Collision Detection in Interactive 3D Environments, Gino van den Bergen
http://www.dtecta.com also website for Solid collision detection library
Discusses GJK and other algorithms, very useful to understand Bullet

 Physics Based Animation, Kenny Erleben
http://www.diku.dk/~kenny/
Very useful to understand Bullet Dynamics and constraints

http://bulletphysics.com/
http://en.wikipedia.org/wiki/Bullet_(software)
http://dynamica.googlecode.com/
http://www.blender.org/
http://www.khronos.org/collada
http://www.realtimecollisiondetection.net/
http://www.dtecta.com/
http://www.diku.dk/~kenny/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 44 -

Contributions and people

The Bullet Physics library is under active development in collaboration with many professional game
developers, movie studios, as well as academia, students and enthusiasts.

Main author and project lead is Erwin Coumans, who started the project at Sony Computer
Entertainment America US R&D and continues doing so full-time at Advanced Micro Devices.

Some people that contributed source code to Bullet:

Roman Ponomarev, SCEA, constraints, CUDA and OpenCL research
John McCutchan, SCEA, ray cast, character control, several improvements
Nathanael Presson, Havok: initial author of Bullet soft body dynamics and EPA
Gino van den Bergen, Dtecta: LinearMath classes, various collision detection ideas
Christer Ericson, SCEA: voronoi simplex solver
Phil Knight, Disney Avalanche Studios: multiplatform compatibility, BVH serialization
Ole Kniemeyer, Maxon: various general patches, btConvexHullComputer
Simon Hobbs, SCEE: 3d axis sweep and prune and parts of btPolyhedralContactClipping
Pierre Terdiman, NVIDIA: various work related to separating axis test, sweep and prune
Dirk Gregorius, Factor 5 : discussion and assistance with constraints
Erin Catto, Blizzard: accumulated impulse in sequential impulse
Francisco Leon : GIMPACT Concave Concave collision
Eric Sunshine: jam + msvcgen buildsystem (replaced by cmake since Bullet 2.76)
Steve Baker: GPU physics and general implementation improvements
Jay Lee, TrionWorld: double precision support
KleMiX, aka Vsevolod Klementjev, managed version, C# port to XNA
Marten Svanfeldt, Starbreeze: parallel constraint solver and other improvements and optimizations
Marcus Hennix, Starbreeze: btConeTwistConstaint etc.
Arthur Shek, Nicola Candussi, Lawrence Chai, Disney Animation: Dynamica Maya Plugin

Many more people have contributed to Bullet, thanks to everyone on the Bullet forums.

(please get in touch if your name should be in this list)

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 45 -

Create Bullet Visual Studio projectfiles using CMake

First, download Bullet from http://bullet.googlecode.com and CMake from http://cmake.org

1. Run CMake-gui

2. Choose the location where you unzipped the Bullet source code, and where you build the
binaries for your own project and press Configure

http://bullet.googlecode.com/
http://cmake.org/

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 46 -

3. Choose the compiler, such as Microsoft Visual Studio 2008

4. Review the settings and press Configure again

http://bulletphysics.org

©Erwin Coumans Bullet 2.82 Physics SDK Manual

- 47 -

5. Make sure the Run-time library is the same as your project (by default it is set to Run-time
library DLL) and press Generate

6. Optionally, you could open the generated project solution (in our case
C:\develop\tutorial\BulletBuild\BULLET_PHYSICS.sln) and build the library and
demos, but this is not necessary

See also the Bullet Wiki on how to create your own project using Visual Studio

http://bulletphysics.org/mediawiki-1.5.8/index.php/Creating_a_project_from_scratch

http://bulletphysics.org/mediawiki-1.5.8/index.php/Creating_a_project_from_scratch

