
An Entity System as the base of a Node Graph Visual
Programming Language

Student: Sven von Brand

Professor: Dr. Hernán Astudillo

Mentor: Benoit Bolsee

Abstract

Entity systems have become a popular approach to game development due to
their advantages in reusing code, adding new logic to entities by relating
components to it without rewriting the entities behavior, and minimizing code
replication.
The Blender game engine (an open source 3D-modeling suite) offers a
graphical editor interface that's close to a node-based representation of game
context behavior. However, extending and customizing games has become
very hard for more complex games, due to very specific logic for each game
object that's very hard to reuse and that complex visual logic is hard to read,
being most games a combination of hard coded Python an visual logic.
This article describes a visual programming node editor for the Blender
Game Engine, by providing an Entity System and building the node editor
around a special-purpose component-oriented programming language. This
proposal is part of an effort to make the visual logic more adequate for game
development, adding the possibility to reuse logic, easier to read logic, more
flexibility to design logic, while keeping current capabilities.
This proposal has been validated with a prototypical implementation of an
Entity System through Python on top of the current Blender Game Engine.
The new logic editor for the Blender Game Engine will allow non-
programmers to build simpler and more self-explanatory visual descriptions
of game logic and the ability to share and reuse logic easier in teams and
between projects. The engine will be released under a BSD license to allow
other projects or companies to use the node engine.

Introduction
An Entity System is a system that's based on the proposition that there are entities which can add,
remove and use different components to define it's behavior and properties. The entity itself doesn't
contain any information, methods or properties, it's just a label that lets the combination of many
components come to life.

As such it is recommended to keep the entities as a very clean element in the system, this allows to
easily change the behavior of entities with ease and there's less code replication as there's the clear

ability to reuse components easily and even in runtime.

The components of the system must be self contained to allow them to work with many different
entities and keep the flexibility of the system as high as possible.

There are some discussions about how an Entity System should be made or exactly what does it mean,
but for the work currently done the definition that best describe the work is that of Adam Martin in his
website [2].

As for the node editor, the definition of it as a programming language allows to solve many problems
by using the body of knowledge of programming language engineering. In this aspect, the current work
follows very closely Anneke Kleppe's work in her book “Software Language Engineering, Creating
Domain-Specific Languages Using Metamodels” [1]. It might sound strange to some to treat a visual
representation as a programming language and one might think the node editor is translated to some
form of code that is the actual programming language, but the powerful idea behind this project is to
actually treat the node graphs and visual representation as the language itself.

Blender has a working visual interface to make interactive content, this part of Blender is called the
Blender Game Engine. The engine has support for physics, an excellent OpenGL features, access to a
working animation system, a python API and a graphical logic editor to create the interactive content.
The current logic editor can be combined with python to make advanced interactive content, but the
visual logic made with the engine is hard to re-use and hard to read.

The current graphical logic editor is based in three columns of elements. The first column are sensor
elements, the second column are controllers elements and the third column are actuators elements. The
description of each element is as follows:

Sensors: This elements check for a certain action to be met, in which case they through either a true if
the condition is met or a false if a action is not met. Examples are keyboard events, property
comparisons and collision detection.

Controllers: This elements are logic statements which will send a signal to any connected actuator if
they are met. This can be a preset of logic statements or a defined expression. It is also possible to run a
python script instead of using a logic statement. This script can access all connected Sensors and
Actuators and can also do some actions directly through the Blender Game Engine python API. The
Controllers can be associated with a state, this functionality allows to be able to encapsulate some logic
and to make conditional and triggered behaviors in objects. States are exclusive to controllers.

Actuators: This elements are triggered when they receive a signal from a controller, this are visible
actions in the content like motion, editing the object mesh and changing properties values.

Currently the system checks sensors and controllers in each object to make each logic step, if an object
is duplicated this mean that all the needed data for the object must be duplicated also.

Problem to solve
Currently Blender has a three columns graphic logic editor that's closer to an object oriented approach,
if each element in the columns is treated as an object, than to a component oriented approach. The
Game Objects function as a reference attached to each element in the columns and what in an entity
system would be a component is currently the combination of elements related in the current system.
This makes it very hard to actually reuse large portions of logic and very hard to actually read the
behavior of it. As more functionality is added to a game object, the current functionality makes the
visual logic representation to grow down, without the possibility of encapsulating logic beyond the use
of states. States allow to encapsulate logic, but not in a way of being able to re-use it correctly.

So the main problems that need to be solved are:

 Visual logic must be easier to comprehend, follow and modify

 Behaviors must be reusable and easy to combine

 Engine must keep current capabilities with the new system

The proposed solution is to make a visual component oriented programming language, which in itself
has many problems to be solved. Making a programming language requires to make the formal
definition of it and make enough examples to make it clear how the language works. The proposed
language must be focused in a broad audience, because of this, the ease of use and easy to learn are the
most important features the language must have. Although the domain of the language is specific to the
Blender Game Engine, the domain must be defined as a domain generic enough to be reused in other
systems, that contains game objects equivalent to those present in the Blender Game Engine.

The functionality that makes the Blender Game Engine attractive and must be kept are:

 Mixing sensor, controller and actuator elements related to different game objects to make a
compound.

 Runtime game object duplication also duplicates relations between game objects. This is
currently done by duplicating sensor, controller and actuator elements and their relation with
other game object's elements, the implementation might be changed in the new system, but the
functionality must be kept.

Illustration 1: Current Blender Game Engine Graphical Logic Editor

 Easy access to Blender's functionality, such as animations, materials, mesh objects, boned
animations and lighting.

Previous Work
Benoit Bolsee and members of the Blender community have made an extensive design document [3] of
a node engine that would make the graphical logic editor easier to extend, give users more options to
make understandable logic and an easier way to re-use logic encapsulating it in graphs.

The proposed improvements of this design are: easy to use, reusable, hierarchical, complete and
extensible. Of the improvements, the only one which cannot be met with a language design approach is
the complete improvement. It is stated in the book “Component Oriented Programming” [4] that
component oriented programming is a new paradigm such as object oriented programming or
functional programming, this would make the described option to use any programming style approach
including object oriented and imperative programming not feasible and also not desired.

Proposed Solution
The proposed node graph visual programming language is a very simple one which has only the
following base elements:

 Entity: The representation of a group of functioning and defined components, it can be related
to one or many components, it doesn't have any data, only a relation with labels and local values
for components related to it.

 Label: Allows to relate one or more entities to one or more components.

 Component: Has self contained logic as graphs and data as properties, it can be related to
entities through labels.

 Graph: represents logic as the combination of nodes and links.

 State: A label in a component that activates or deactivates graphs.

 Node: Receives and sends information through links, which are connected to Data-in and Data-
out pins. Has internal logic to handle information.

 Push-in and Push-out pins: Pins are related to links, each Pin can be connected to multiple links,
but only be part of one Node. A link can be related

 Pull-in and Pull-out pins: Pins are related to links, each Pin can be connected to multiple links,
but only be part of one Node.

 Push Links: A Push Link is related to a Push-out pin and a Push-in pin. Push Links have
internal logic to delay transporting data and filtering, it transports entity lists from one node to
another to activate them.

 Pull Links: A Pull Link is related to a Pull-in pin and a Pull-out pin. The link works on demand
and doesn't have logic attached to it.

 Properties: Properties are specific to Components, a property can only be related to one
component and accessed through a node in the graph. Properties can be private to the
component, public to all components or available only to components related directly to the
same entity. Also properties can be at component level or at entity level, being the later the

default use of properties. At component level, a property will only have two scopes, private to
the component and global.

To describe the language it will be used an abstract syntax and a concrete syntax with examples.

Abstract Syntax

This syntax denotes the relation between the components but doesn't give information about how they
should be combined to make a working program. This syntax is enough as a base of rules to follow and
to make a simple syntax checker and to have an idea of how a program should be made using this
language. To simplify the description, the used syntax will be the one in illustration 3, while the
complete one is in illustration 2

Illustration 2: Abstract Syntax

Concrete Syntax

The language design is based in the ability of the nodes to make actions based on received information
and to send out information through pins. Instead of creating the nodes functionality as part of the
proposed language, it is proposed to have an API to trigger actions in each node, which could make use
of different references to entities, properties and other components and to have a base type of available
nodes. As part of the design of the language it must be defined a way to create new nodes and basic
nodes that allow the creation of simple programs without the need of custom nodes made through an
API.

The next proposed representations are the relation of instances of elements defined in the abstract
syntax. This doesn't represent the final visual representation of the actual language, as some elements
will be simpler to represent, for example links between nodes.

Currently any object created in the Blender Game Engine has properties attached to it and logic can be
attached to it only directly in the current visual programming interface, the equivalent of a cube with no
logic in the new system would look like this:

While to put logic in it with the new system, while having the old systems capabilities would be like
this:

Illustration 4: Concrete syntax simple example

Illustration 3: Simplified Abstract Syntax

The advantage of the component approach is to be able to leave the properties in one component and
the graph doing the motion in another component, this way it could be attached to many entities very
easily.

It is also proposed that labels can be dynamically linked to components and entities, making the system
even more flexible.

Components representation

For the concrete syntax the representation in illustrations 4, 5 and 6, the syntax used serves to easily see
the abstract syntax applied, but using this as the final concrete syntax would be impractical, so a set of
visual components and it's relations is presented for this document. This representation is also not a
final representation, as the final representation must be integrated in the blender interface, but is closer

Illustration 6: Concrete syntax simple example 3

Illustration 5: Concrete syntax simple example 2

to a representation a user should expect of the proposed language. Colors are used to better identify the
different elements, but

Entity: An entity will be a rectangle with the option to attach labels to it. As a component is attached to
an entity, it will be possible to set an initial state to this component related to this entity and starting
values to properties accessing a special menu from a label. The only way to attach a component is
through labels. Components cannot be edited through the entity menu, only the initial values and
activated states can be changed.

Component: a component will be the combination of a rectangle with the name of the component, a list
of labels, a list of properties and a list of states related to it. It will be linked to the graphs it owns. The
values in the properties and active states are the default initial values when a component is related to an
entity. The letter to the left of properties is the scope of the property. For Entity properties “P” means
the property is public to any component, “S” means that the access is shared only to other components
directly related to that entity and “L” means that the property is at entity level but it is local and
accessible only to the component that has the property. For Component properties “L” means the
property is local and can be accessed only through that component, “G” means that the property is
global and unique to all components.

Graphs: A graph is the combination of nodes related through links, it will have a rectangle with an
identifier of the graph and a combo-box of states that can be associated to the graph, only one graph
can be associated to each state. If the component is related to an active state, the graph will be active,
otherwise the graph is not active. States of graphs cannot be custom to an entity, but the initial active
states of a component can be custom to an entity.

Node: A node will be a square with an identifier, which will have pins attached to it in each side and
will have possible input data or optional elements inside of it. In some cases new pins can be added.
Top pins (red) are Pull-in pins, bottom pins (brown) are Pull-out pins, The left pin (yellow) is the Push-
in pin (there can only be one of this) and right pins are Push-out pins. The “Node Type” is a combo box
with available nodes. The “Custom Node Data” field will be different for each node.

Pins: The Push-in pin will be in the left side of a node and Push-out pins will be in the right side of a
node. Pull-in pins will be in the top side of a node and Pull-out pins will be in the bottom side of a
node. All pins will be simple small named circles.

Labels: Labels will be added to an entity or component through a list.

Special nodes

It is proposed to have some basic nodes defined as part of the language to have a set of functionality
available without the need of having custom nodes. All nodes have a Push-out pin, which can be left
unconnected, this allows to have many nodes be called sequentially, this Push-out pin automatically
emits a pulse to connected nodes once the nodes finishes execution.

The proposed nodes are:

If node: This node will have one or more Pull-in pins, will have space to put a logic statement very
much like an if statement and a Push-in pin. This node will have two special Push-out pins apart from
the default one, a true Push-out pin and a false Push-out pin.

Switch node: This node will have only one Push-in pin and at least one Push-out pin. This node will
compare the data received in the Push-in pin with a value for each Push-out pin. If the value of the
received data is the same as the value assigned to a Push-out pin, a pulse through that pin will be send.
There will be a switch default Push-out pin (apart from the default Push-out pin), which will activate if
no Push-out pin value is met.

Property value node: This node will have one Pull-out pin, it will send the value of a defined property.
It can optionally have a Pull-in pin to get an Entity reference. The Entity reference can be set to default.

Property editor node: This node has one Push-in pin, and can optionally have one or more Pull-in pin. It
will be able to change the value of a property in different ways, for example, using a value from a Pull-
in pin or a defined value. In case of numbers it will allow setting a value and adding a value, both from
the received data or predefined. In case of strings it will allow to set data only. In case of a boolean it
will allow to set a value or toggle the value.

Entity node: This node will have only one Pull-out pin, which upon request will send a reference of a
defined entity in the node through the pin.

Label node: Allows to add a label to a component or entity it has a Push-in pin to activate and can have
a Pull-in pin, from which to get the label to add.

Reference node: This node will have a Pull-in pin that can receive a reference to an entity and at least
one Pull-out pin. A Pull-out pin will send upon request the value of a property attached to that entity
through components. A property to use can be defined for each Pull-out pin. Properties include
references to game objects that Entity may have.

State node: This node sets the activated nodes, activates a state or deactivates a state. It has one Push-in
pin and a Pull-in pin, if a pulse comes from the pin it can set a defined state for the entity's component
or get a state's name from it's pull-in pin.

Always node: This node has only a Push-out pin, which always sends a pulse. It can be set to send a
pulse each step or only once when it becomes active.

Delay node: This node has only a Push-out pin, which sends a pulse after a defined delay inside the
node and a Pull-out pin that allows to check if the sensor is active. It can also be defined if it should
send a pulse only once or to start the delay again once it sends the pulse.

It is also proposed to have equivalent nodes to sensor elements in the current blender system, such as:

Keyboard Node: Based on the Keyboard Sensor. It has a Push-out pin, sending a pulse when a key,
selected inside the node, is pressed and a Pull-out pin that allows to check if the sensor is active.

Mouse Node: Based on the Mouse Sensor. It has a Push-out pin, sending a pulse when a defined mouse
click is pressed or another mouse related condition is true and a Pull-out pin that allows to check if the
sensor is active. The options will be available inside the node in a similar way of the current Mouse
Sensor element.

Collision Node: Based on the Collision Sensor. It has a Push-out pin, sending a pulse when a defined
collision occurs and a Pull-out pin that allows to check if the sensor is active. The options will be
available inside the node in a similar way of the current Collision Sensor element. It is proposed for it
to optionally have a Pull-out pin, which can get the colliding game-object reference.

Many nodes must be made to replicate actuator elements, but for this document the following will be
defined:

Motion Node: Based on the Motion Actuator. It has a Push-in pin, which activates the node, and a Pull-
in pin, which fetches a reference to a game object. The game-object reference can be set inside the node
manually. It is proposed to have an optional Pull-in pin to have motion be affected by calculated data or
data defined in a node.

Portal Node: A graph can have none or more Portal Nodes. this node has a Push-in pin and has a Push-
out pin it can also have a Pull-in pin to store data. This node can reference a Portal In Node by name to
activate it or share data.

Portal In Node: A graph can have none or more Portal In Nodes, which act as sensors. It has a Push-out
pin and a Pull-out pin, the Push-out pin is activated if the a Portal Node references this node, and data
can be pulled out of the node if it was stored in the Portal Node. All actions are local to entities.

How to make custom nodes

It is proposed to have access to the API and be able to create python modules inside a node that run
when it receives Push-in pin's data and uses Pull-in pin's data and Push-in pin's data. The node can send
messages through the Push-out pin's or send a message through a Pull-out pin on demand. This
approach needs coding and hiding logic in code from the nodes but it is similar to how the current
Blender Game Engine handles python scripts.

It is also proposed to have a custom node generator from a special graph. This nodes could be saved in
a library to be used and shared. The component approach should make it easier to make generic custom
nodes. It is proposed to have four initial nodes in the graph, each with only one type of pin: a Push-in
Node, a Push-out Node, a Pull-in Node and a Pull-out Node. The initial nodes would be the interface of
the node generated with the graph. Each of this initial nodes can be filled with pins to make the logic,
but the pins of the generated node will only be: the Push-in pin from the Push-in Node, all Push-out
pins from the Push-out Node, all the Pull-in pins from the Pull-in Node and all the Pull-out pins from
the Pull-out Node.

Examples without custom nodes

The following examples show the strengths of the systems with only the base proposed language using
the proposed design.

The example in illustration 7 is the same as illustration 5, which shows how the logic is encapsulated in
the component and not in the entity. It is also used a component to refer to the game object, making the
logic easy to use with other game objects and entities.

In the illustration 8 the simple example described in the illustration 6 is showed with the new proposed
syntax. In this example the “CubeEntity” and the “SphereEntity” have two components each. The
“MovingObject” label relates each entity with the “MovingComponent”, which moves a game object
referred as “GameObject”. The “GameObject” property is different in each entity as one has the
“GameObject” property from the “CubeComponent” and the other has the property from the
“SphereComponent”.

Illustration 7: Simple Example 2 with proposed syntax

The functionality of the previous example can also be achieved through initial values of properties in
the entity. For this the “CubeComponent” and “SphereComponent” will be combined into a
“GameObjectComponent” with an empty reference to a game object.

The initial default value of the “GameObject” property, which is a reference to a game object (GOR for
Game Object Reference) is empty, so it is set in each entity as 'Cube' and 'Sphere' respectively.
Illustration 9 shows how the initial values could be set.

Illustration 8: Simple example 3 with the proposed syntax

This values can be changed in runtime and are persistent for each entity.

The example in illustration 10 and illustration 11 shows an object and two components, using portal
nodes to use components to have a flexible, self contained logic for movement and for controls. This
allows to change controls of the entities by changing a label or having different entities sharing the
player label and having their own control scheme.

Illustration 10: Editing initial valuesIllustration 9: example using initial values of properties

The Push-out pins in the Portal Nodes allow to continue processing logic nodes after that node has been
activated. It is proposed for the portal node effect to be processed when the component that has that
component runs and not immediately like a function in languages like python or C. For logic to be used
like functions the custom nodes are to be used.

In case the target Portal In Node doesn't exist, the trigger will have no effect.

The movement example is missing a reference node for the game object, like in illustration 9, this is
done to have a cleaner and more visible example. It is proposed to have the option to define the target
object reference inside the node and not having to use a reference node.

Illustration 11: Controller component example

Example with custom nodes

The following example show the strengths of the systems with the use of custom nodes.

The first step is to create a curstom node. This node is proposed to be made graphically.

Illustration 12: Movement component example

Illustration 13: Custom iterative node

The proposed custom node would be called “PushOutNTimes” and would take a property in the Pull-in
pin number 1 and Push-out a pulse a number of times equal to that property's value. The property
would then be set to 0. This is very much like making a for statement in C in the form:

for (i=”value”; i>0; i--)

{

}

In illustration 13 it is possible to see how the node would be constructed, the four nodes on the sides,
that only have a name, correspond to the special nodes that define the external pins of the custom node.

In the case of the “Pull-in Node”, each Pull-in pin would automatically be related to the equivalent
Pull-out pin.

In a graph it could be used like in illustration 14.

The graph Moving activates the “MotionNode” an amount of times equal to the speed. The first step of
copying the value of 'Speed' to 'i' is to avoid 'Speed' being set to 0 inside the “PushOutNTimes” node.
The Property editor node “SetItoSpeed” sends a pulse to the custom node after changing 'i' value, this
makes the PushOutNTimes use the 'i' value starting from the 'Speed' value. To avoid any intervention
from other components, the 'i' property is set to local inside of the component.

Illustration 14: Example using a custom node

Proof of Concept
A small limited python based Entity System was made for the Blender Game Engine[5] with two game
examples one done entirely with the current system[6] and one done with the Entity System made for
the proof of concept[7]. This prototype allows using labels on Entities, represented by game objects, to
apply logic from components, copy custom properties from the component and have local persistent
values to this properties at Entity level. Entities are also represented by game objects, with the labels
being represented by game object properties. This prototypes shows how an Entity System allows
quick re usability, ease to modify shared logic and ease to reuse multiple game object related logic in
comparison to the current system.

Sensors elements are used to simulate the sensor nodes and a python script is made to simulate a graph.
The example also shows how runtime labeling allows to apply different components to the same object
upon request, encapsulating logic. The most important test in the proof of concept uses the current logic
bricks, being able to create sensors and actuators that are special to each game object inside the
Component, and simply checking them through simple reference to the Entities. To do this, an explicit
labeling system is made, which when is run, automatically creates the logic structure in a labeled Entity
to be used through python scripting at component level. Because of the current Blender python API
limits, only one component can copy sensor or actuator elements to Entities, but pure python based
logic can be attached at runtime and without limitations. Also python pure logic can access other
component's defined sensor and actuator elements defined in an Entity.

The example was made to compare the current system with the new proposed system in making a
game. In the process of making a game, or any interactive content, it is common to want to change
some behaviors, such as movement speed in a character, or adding more logic to a certain object or
group of objects. The current system, without the use of python, is hard to modify and doesn't
encourage tweaking logic applied to a group of objects, as it is common to have to apply changes
manually to each object or change one object and copy the logic from that object to the others and
make local changes to objects after that. There are ways to artificially make local logic of game objects
more manageable, but the proposed solution would encourage to do reusable logic to beginners and
make team work more manageable.

The proposed node-based syntax for logic has many similarities to the current game engine, but
expands it by giving the ability to have explicit larger logic sequences and more options to the user to
make logic more readable and modifiable.

Both the proof of concept using python and the current system are strong indicatives that a system like
this would expand the current engines functionality related to reusability, visualization of logic and
ease to modify logic.

Implementation
This is a top level design that designs the user elements available to make programs and tries to give an
inside on the strengths and functionality that make it an improvement over the current system. This
proposal doesn't go into detail on technical implementation as it is focused on the user and not the
underlying system, this means that the design is flexible enough to be implemented on other softwares
and is not a Blender specific functionality. This is clear, as it is presented as a programming language
design, and a programming language should not be platform specific.

It is proposed to make an iterative prototype driven implementation, making prototypes that allow to
test the power and flexibility of the proposed functionality giving priority to the ease to change and
expand prototypes over optimization, modifying the language upon finding problems or possible
improvements and changing the prototype to meet the language requirements. Upon getting to a stage
where the language is well defined and the prototype proves to be powerful enough, it is proposed to
optimize the prototype or make a more optimized implementation based on the prototype.

Conclusion
In comparison to the current system, it would be very easy to make group of entities behave in a group
manner. It would be very natural to make a multiplayer game separating the logic of the controllers
with only a component or even with the initial values of properties and avoiding code duplication. It
would also be straight forward to add a new functionality to many entities with less effort by only
adding a new component to a label shared by the entities desired to have the behavior.

One of the problems with the new approach against the current is that as the design is to keep
component modular and self contained, it is a little bit harder to directly relate the behavior of two
objects in the game.

The proposed solution allows the reuse of visual code and it will be designed to be easy to read and
understand also. The reuse of components with an entity system design allows to very easily import a
component from one project to another and reuse it with very little work, allowing this in the future to
manage bigger projects and share solutions with the community much easier. This is made possible by
following the idea that a component must be self contained and that it cannot depend upon a certain
kind of entity for it to work.

The most notable advantage in designing a game is the possibility to easily change the behavior of
entities through relating components with entities by applying label changes. This doesn't limit to the
functionality of the states in the current Blender Game Engine, specially because it allows explicit logic
re-use and the language design pushes the developer into making the code re-usable.

References
[1] Kleppe, Anneke. Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels. Adison Wesley, United States 2008.

[2] Martin, Adam. http://t-machine.org/ T-Machine Blog posts on Entity Systems. 2007 through 2010.
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/

[3] Blender Foundation. Hierarchical Nodal Logic for Blender 2.5. 2009 through 2010.
http://wiki.blender.org/index.php?title=Dev:Source/GameEngine/NodalLogic

[4] Ju An Wang, Andy and Qian, Kai. Component Oriented Programming. Wiley Interscience,
Hoboken, New Jersey , United States 2005 .

[5] Proof of Concept, requires Blender 2.58 to be run:

http://wiki.blender.org/index.php/File:Dev-GSoC2011NodeEngine-ProofOfConcept-V0.6.blend#file

[6] Proof of Concept game example, requires Blender 2.58 to be run:

http://dl.dropbox.com/u/18587391/Dev-GSOC2011NodeEngineExampleNoNodes-v0.1.blend

[7] Proof of Concept game example with an Entity System, requires Blender 2.58 to be run:

http://dl.dropbox.com/u/18587391/Dev-GSOC2011NodeEngineExampleNodeSimulation-v0.1.blend

http://t-machine.org/
http://dl.dropbox.com/u/18587391/Dev-GSOC2011NodeEngineExampleNodeSimulation-v0.1.blend
http://dl.dropbox.com/u/18587391/Dev-GSOC2011NodeEngineExampleNoNodes-v0.1.blend
http://wiki.blender.org/index.php/File:Dev-GSoC2011NodeEngine-ProofOfConcept-V0.6.blend#file
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/

	An Entity System as the base of a Node Graph Visual Programming Language
	Abstract
	Introduction
	Problem to solve
	Previous Work
	Proposed Solution
	Abstract Syntax
	Concrete Syntax
	Components representation
	Special nodes
	How to make custom nodes
	Examples without custom nodes
	Example with custom nodes

	Proof of Concept
	Implementation
	Conclusion
	References

