Meta:JA/Guides/Style Guide/Formulas
目次
Latex記法による数式の書き方
数式を書けるようにするLatex記法が使えるようになりました!
以下の例をご覧ください。Latex記法における総合的なヘルプは http://meta.wikimedia.org/wiki/Help:Formula にあります。また、 Latex記法は<math></math>タグを使います。
例
二次の多項式
<math>ax^2 + bx + c = 0</math>
<math>ax^2 + bx + c = 0</math>
二次の多項式(強制PNG)
<math>ax^2 + bx + c = 0\,\!</math>
<math>ax^2 + bx + c = 0\,\!</math>
二次方程式の解
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
大きな括弧と分数
<math> 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math> S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} </math>
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
積分
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
総和
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math>
微分方程式
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
<math>u + p(x)u' + q(x)u=f(x),\quad x>a</math>
複素数
<math> |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
<math> |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
極限
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
積分方程式
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
<math>\phi_n(\kappa)
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
例
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
連続や場合分け
<math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} </math>
<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}</math>
下付文字の前置
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}</math>
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}</math>
分数と分数を小さく表示する
<math> \frac {a}{b}\ \tfrac {a}{b} </math>
<math> \frac {a}{b}</math> <math> \tfrac {a}{b} </math>